设文无忧为首页 | 把文无忧加入收藏夹 | 站务联系     论文格式网:论文格文下载,论文格式大全,论文格式范例,如何写论文,怎么把握论文的格式,分类最全的论文范文格式网。
你所在的位置:首页 > 论文范文 > 工学论文范文
工学论文范文:纤维素的研发及运用
纤维素的研发及运用
| 文章出自:论文格式范文 | 编辑:职称论文发表 | 点击: | 2013-04-08 21:56:12 |

纤维素是自然界中最丰富的天然高分子聚合物之一,不仅是植物纤维原料主要的化学成分,也是纸浆和纸张最主要、最基本的化学成分。纳米纤维素是直径小于100nm的超微细纤维,也是纤维素的最小物理结构单元[1];与非纳米纤维素相比,纳米纤维素具有许多优良特性,如高结晶度、高纯度、高杨氏模量、高强度、高亲水性、超精细结构和高透明性等,加之具有天然纤维素轻质、可降解、生物相容及可再生等特性,其在造纸、建筑、汽车、食品、化妆品、电子产品、医学等领域有巨大的潜在应用前景[2-3]。目前,国内纳米纤维素的研究已有一些[4-5],但总体还处于起步阶段。国际上对纳米纤维素已进行了几十年的系统研究,已在制备、表面修饰、表征、复合材料、医学材料及光学材料等功能特性及应用方面做了许多尝试性研究,有些成果已商品化。2011年,加拿大魁北克DomtarWindsor制浆造纸厂已建立世界上第一个工业规模、产能1t/d的纳米微晶纤维素(NCC)示范车间,标志着纳米微晶纤维素在制备方面已取得较大突破[1]。本文主要介绍了纳米纤维素的制备方法及在制浆造纸领域的应用。

1纳米纤维素制备方法

1.1机械法制备MFC

天然纤维素经高压机械处理,得到一种新型高度润胀的胶体状纳米纤维素,一般称之为微纤化纤维素(MFC)。MFC是由一些长的线状微细纤维组成的无规则网状物,保留了微细纤维的外形,其纤维直径为10~50nm,长度为直径的10~20倍[6]。通过机械法制备MFC,无需化学试剂,对环境影响小。但采用这种方法制备的MFC粒径分布宽,且制备设备特殊,能量消耗高,因此该方法目前应用较少。高压均质法和化学机械法都属于机械制备法。

1.1.1高压均质法

高压均质法是将纤维素分解成纳米纤维素的一种常用的机械制备方法。在高压均质过程中,压力能的释放和高速运动使物料粉碎,从而减小物料的尺寸。20世纪80年代早期,Turbak等[7]以4%左右的预水解木浆为原料,制备出了MFC。文献[8]表明,Duf-resne等通过高压均质化作用对纯化后的甜菜纤维进行处理,使其细胞壁发生破坏,从而制备出MFC,MFC经干燥后可用于制备高强度纤维片。Zimmer-mann等[9]采用不同的原材料,通过机械分散和高压均质过程,制备出了最大长度及直径小于100nm的MFC。分析表明,微米尺寸的纤维素易团聚,网状结构的匀度较差。图2竹浆微纤化纤维素的扫描电镜照片

1.1.2化学机械法

高压均质法易出现均质机堵塞等问题,从而无法实现制备过程连续化。为解决上述问题,出现了一系列改进方法,即化学机械法。化学机械法是先用化学降解方法对纤维进行适当的氧化降解预处理,再用高压均质机进行均质化处理的制备方法。采用化学机械法,可以从木材、麦草和大豆中制备出MFC。ShreeP.Mishra等[10]以漂白阔叶木硫酸盐浆为原料,先用TEMPO-NaBr-NaOCl系统进行氧化,然后进行机械处理(即用普通搅拌机搅拌),成功制备出结晶度较高的MFC。Alemdar等人[11]通过对麦草进行化学预处理,然后用机械法制备出了直径为10~80nm、长度为几千纳米的MFC。Wang等人[12]也采用该方法成功地从大豆中制备出直径为20~120nm、长度比麦草制备的MFC稍短的MFC。具体制备流程见图1。图1大豆制备MFC流程张俊华等[13]以漂白硫酸盐竹浆为原料,经过PFI打浆、化学预处理以及后续的高压均质化处理,制备出直径在0.1~1.0nm的纳米级MFC产品,如图2所示。

1.2化学法制备NCC

天然纤维素经酸水解或酶解后,得到NCC。NCC是一种直径为1~100nm、长度为几十到几百纳米的刚性棒状纤维素,一般具有天然纤维素Ⅰ的晶型,可在水中形成稳定的悬浮液[8]。化学法制备NCC的同时,还可对其表面进行改性,从而赋予纳米微晶纤维素新的功能和特性。因此化学法是国内外重点研究的NCC制备方法,研究者目前对NCC的制备、结构、性能及应用已有了比较深入的了解。

1.2.1酸水解法

酸水解法制备NCC会产生大量的废酸和杂质,对反应设备要求高,且反应后残留物较难回收,但制备工艺比较成熟,已实现工业化生产。NCC的尺寸、大小和形状在一定程度上由纤维素原料决定[14-15]。不同物种纤维素的结晶度、微原纤的尺寸差异较大。表1为不同纤维材料制备的NCC尺寸范围。从表1可以看出,采用针叶木、棉花和麻类这些植物原料制备的NCC尺寸相对较小,而采用被囊动物、细菌和海藻制备的NCC尺寸较大[8]。1947年,Nickerson等人[16]最早用盐酸和硫酸水解木材制备出纳米纤维素胶体悬浮液。1952年,Ranby[17]通过酸水解方法制备出了长度大约为50~60nm、宽度大约为5~10nm的纳米纤维素晶体。1997年,Gray等人[18]采用硫酸水解棉花、木浆等原料,制备出了不同特性的纳米纤维素,并研究了其自组装特性和纤维素液晶的合成条件。2006年,Bond-eson等人[19]优化了硫酸水解挪威云杉制备NCC的条件,找到了快速高得率制备纳米纤维素胶体的方法。棉纤维具有高结晶度、来源丰富和成本低廉等优点,成为制备NCC的优良原料。Dong等人[20]以棉滤纸为原料通过酸水解制备出了NCC,并研究了水解条件、制备方法和纤维悬浮液有序向列行为。Hasan-Sadeghifar等[21]以棉纤维为原料,通过HBr水解制备出了NCC,其制备的NCC直径为7~8nm、长度为100~200nm,具有较高的横向结晶度,如图3所示。丁恩勇等人[22]以棉纤维为原料,采用超声波分散和强酸水解的方法制备出尺寸在5~100nm、外形呈球状或椭球状的NCC,其颗粒外层的全部或局部具有纤维素Ⅱ的晶型,颗粒内部具有纤维素Ⅰ的晶型。Zhong-YanQin等人[23]以棉浆为原料,在TEMPO-NaBr-NaOCl系统氧化时采用超声波处理,制备出直径为5~10nm、长度为100~400nm的NCC。该方法制备的NCC结晶度高,得率稳定。微晶纤维素(MCC)与其他纤维素相比省去了漂白脱木素过程。MCC本身具有较高的结晶度和较小的粒度,为进一步快速高效制备NCC提供了条件。目前,国内外研究人员大多采用MCC作为制备NCC的原料。文献[8]表明,Marchessault等人采用硫酸水解MCC,不仅分离出NCC,而且还发现制备的NCC表面带负电荷,因此NCC由于静电排斥力的作用而形成一个稳定的纤维素悬浮液体系。Bai等人[24]对MCC进行酸水解得到NCC后,采用差速离心的方法将制备的悬浮液进行分级,从而得到满足不同需求、分布较窄的NCC。唐丽荣等人[25]以MCC为原料,以阳离子交换树脂为催化剂,通过硫酸水解制备的NCC直径为2~24nm。长度较普通酸水解制备的图4细菌NCC的透射电镜照片NCC的更长,呈丝状,且相互交织形成网状结构。除了以上用得较多的原材料,被囊动物、细菌纤维及麻类等由于具有较大的长径比,也成为制备NCC的原料。1952年,Ranby等人[17]研究了被囊动物和细菌纤维的物理化学性质。文献[8,25-26]表明,Terech等人通过硫酸水解被囊动物制备出宽为10~20nm,长为100nm至几微米的纤维素晶须;Grunert等人通过硫酸水解细菌纤维素制备出棒状的NCC,图4为Grunert所制备的细菌NCC的透射电镜照片[8,25-26]。许家瑞等人[27]以剑麻纤维为原料,采用氯气氧化降解法制备出平均直径为10~20nm,形状为球状的NCC水溶胶产品。WeiLi等人[28]以漂白针叶木硫酸盐浆为原料,结合酸水解和超声波处理,制备出直径为10~20nm、平均长度为96nm的NCC。Le-androLuduena和MaryamRahimi等人[29-30]分别以米糖和麦草为原料,采用HCl、NaOH预处理,之后用浓硫酸水解制备出NCC。

1.2.2酶解法

酶解法制备工艺条件温和,专一性强,且所用的试剂酶与纤维素酶均为可再生资源,因此其对社会可持续发展具有重要意义,预测酶解法将成为未来研究的热点。酶解即利用纤维素酶选择性酶解无定型纤维素,剩余部分即为纤维素晶体。在这一过程中,可能会发生表面腐蚀、剥皮以及细纤维化和切断作用[31],从而使纤维素分子聚合度下降。目前,酶解研究采用较多的原料是木质纤维素、多种细菌纤维素和MCC。NorikoHayashi等人[32]用纤维素酶酶解海洋生物刚毛藻类MCC,得到了具有纳米尺度的纤维素。蒋玲玲等人[33]利用纤维素酶(绿色木霉,TrichodermaVrideG)水解天然棉纤维,制备出纳米纤维素晶体,该纤维素晶体粒径范围为2.5~10.0nm,大多呈球状。

1.3生物法制备NCC

生物法制备NCC的最大优点是低能耗、无污染,因此国内外都竞相发展这一技术。通过微生物合成法制备的纤维素通常被称为细菌纤维素。细菌纤维素的物理和化学性质与天然纤维素相近。生物法制备NCC时可调控NCC的结构、晶型和粒径分布等,因此容易实现工业化和商业化。但是细菌纤维素制备过程复杂、耗时长、成本高、价格贵、得率低[8,26]。文献[34]表明,1986年Brown等人发现木醋杆菌(Acetobacterxylinum)可生产细菌纤维素,此后人们对细菌纤维素的研究越来越深入。除木醋杆菌可以生产细菌纤维素外,根瘤农干菌(Agabaoteriumtumefa-ciens)、假单细胞杆菌属(Pseudomonas)、固氮菌属(Azotobacter)、根瘤菌(Rhizobium)等某些特定的细菌也能产生细菌纤维素,其中对木醋杆菌的研究比较深入[8,34-35]。采用不同的培养方法,如静态培养和动态培养,利用木醋杆菌处理可得到不同等级结构的纤维素。通过调节培养条件,也可得到化学性质有差异的细菌纤维素。此外,也可采用不同葡萄糖衍生物碳源生产纤维素,如Rainer[36]以阿拉伯糖醇和甘露糖醇为碳源生产纤维素,产生的纤维素量分别是以葡萄糖为碳源的6.2倍和3.8倍。为降低生产成本及减轻环境污染,薛璐等人[37]以大豆乳清代替蒸馏水作为培养液基质,提高了细菌纤维素的产量,降低了生产成本。

2纳米纤维素的应用

近年来,研究人员对纳米技术与纳米材料在制浆造纸领域中的应用表现出了极大兴趣。李滨等人[38]介绍了纳米技术及纳米材料在浆料制备、纤维改性、湿部化学、纸张涂料、功能纸生产等领域的研究进展,并对其存在的问题和潜在应用做了探究。王进和唐艳军等人[39-40]分别研究了纳米SiO2和纳米CaCO3在彩色喷墨打印纸涂料和纸张涂料中的应用。由于纳米纤维素具有极大的比表面积和丰富的表面羟基,若将其加入到纸浆中,其与纸浆纤维能够紧密结合,从而提高纸浆纤维之间的结合力,因此纳米纤维素可作为制浆造纸过程中的增强剂、助留剂和助滤剂,具有很好的发展前景。张俊华等人[41]研究了MFC对纸张的增强效果,其将竹浆MFC、阳离子淀粉及竹浆MFC与阳离子淀粉复配物分别加入到纸浆中进行抄片。实验结果表明,将竹浆MFC加入到纸浆中可提高手抄片的物理性能,且MFC与阳离子淀粉协同使用时,其增强效果要明显好于单独使用竹浆MFC或阳离子淀粉时的增强效果。宋晓磊等人[42]研究了聚酰胺多胺环氧氯丙烷(PAE)/NCC二元湿强体系对纸张湿强度的影响,其采用先加入PAE、之后加入NCC的方法进行人工抄片。实验结果表明,当NCC用量为4%时,PAE/NCC二元体系对手抄片的干抗张强度增强效果最好,最大值为112.6N•m/g,比单独加入PAE时提高了35.5%。吴开丽等人[43]所做的实验结果表明,NCC对纸张的物理强度有一定的增强作用,且不同制备工艺条件制备的NCC对纸张的增强效果也不同;此外,其还分析了制备NCC时反应时间、反应温度及酸浆比对纸张增强的影响。

NCC的悬浮液在磁场或剪切力的作用下能发生定向,干燥成固体后这种定向仍然存在,因此NCC具有手性向列液晶相的特殊光学性能。定向NCC膜所反射的圆偏振光颜色随入射角度变化而变化。基于这种特殊光学性能,NCC可用于荧光变色颜料(如荧光变色油墨)的制造;NCC的光学特性使其不能通过印刷和影印等技术进行复制,可用于防伪纸、防伪标签和高级变色防伪油墨[43-44]。纳米纤维素除了用于制浆造纸,在其他领域也有应用。

(1)高性能增强复合材料

纳米纤维素与普通纤维素相比,在高杨氏模量及强度方面有数量级增加。桂红星等人[45]研究了NCC对天然乳胶的增强效果,当NCC用量为4%时,硫化胶膜的拉伸强度提高了69%;撕裂强度提高了210%。采用纳米纤维素作为工程塑料的增强填充剂,纳米纤维素含量高达70%时,增强产品具有普通工程塑料5倍的高强度,与硅晶相似的低热胀系数,同时保持高的透光率。利用这种特性可开发出柔性显示屏、精密光学器件和汽车或火车车窗等新产品[26]。此外还可用于建筑行业的增强,比如承重墙、楼梯、屋顶、地板等。

(2)电子工业

Shah等人[46]开展了采用纳米纤维素做高解析度动态显示器件的研究,使其有望作为电子书籍、电子报刊、动态墙纸等的新材料。Jonas等人[47]的研究提到索尼公司已经将纳米纤维素应用到耳机隔膜中,如图5所示。

(3)医药工业

纳米纤维素晶体能牢固地吸附药物及其他配料,所形成片剂不易吸湿,但可迅速崩解,因而被广泛用作赋形剂和崩解剂,制造嘴嚼药片、糖衣片和膜衣片等。此外,纳米纤维素还可用于人造皮肤、人工血管、神经缝合保护罩、动物伤口敷料及牙齿再生等。

(4)日用化工业

粉末纳米纤维素晶体可作为黏结剂,直接用于化妆品的压制,所得到的产品表观细腻、平滑、易于擦去。据报道,日本和美国已将纳米纤维素用于膜滤器(无菌装置、超滤装置等)、高强度纸杯、可循环使用婴儿尿裤、仿人造皮革、指甲油等化妆品基质[26,48]。

(5)食品工业

纳米纤维素在食品行业主要作为食品添加剂,如乳化和泡沫稳定剂、高温稳定剂、增稠剂、悬浮剂、面粉替代物、脂肪替代物、冷冻食品及饮料中的添加剂等[43]。

3结语

纳米纤维素作为一种新型的生物材料,由于其特殊的纳米尺寸结构、力学性能和光学性能成为未来纤维素研究的前沿和热点。由于纳米粒子的特性,制备过程中纳米微晶纤维素(NCC)的团聚作用使得纳米颗粒的小尺寸效应难以发挥,因此NCC的分散仍是目前研究的难点。由于物理、化学和生物法各具优缺点,因此研发新型、简单、绿色、低能耗、快速、高效的纳米纤维素制备方法刻不容缓。目前,国内外专家研究主要集中在纳米纤维素作为增强相的力学性能及其液晶自组装性能。纳米纤维素作为增强相,其与复合材料的均匀分散是当前面临的主要挑战。为了进一步更好地应用纳米纤维素,纳米纤维素的化学改性、热降解行为也应成为关注的重点。随着石油煤炭等化石资源储量的不断下降,石油化工原料的价格不断上涨;加上各国对环境污染问题的日益重视和对绿色化学的呼吁,纳米纤维素作为一种用途十分广泛的生物材料,蕴藏着无限商机和美好的发展前景。

论文格式没有一个固定或都官方的样式,但是约定俗成,多看看不同的期刊的要求,结合自己的的需要再进行修改创作吧!

友荐云推荐
相关论文列表
文无忧论文格式网是一个专业提供各类论文的标准格式,标准论文格式范文,各类论文范文模板,免费论文下载,各类应用文文书、合同范文等的论文网站。
Copyright©2012-2046 文无忧. All Rights Reserved .心无界 文无忧—文无忧 让你行文无忧 版权所有 文无忧lun.wen5u.com-论文无忧
网站合法性备案号:蜀ICP备14013885号-1