设文无忧为首页 | 把文无忧加入收藏夹 | 站务联系     论文格式网:论文格文下载,论文格式大全,论文格式范例,如何写论文,怎么把握论文的格式,分类最全的论文范文格式网。
你所在的位置:首页 > 论文范文 > 农学论文范文
农学论文范文:对虾养殖污水处置研究
对虾养殖污水处置研究
| 文章出自:格式网 | 编辑:职称论文格式 | 点击: | 2013-04-24 21:10:34 |

近年来,我国水产养殖业发展迅速,水产养殖产量已连续多年居世界首位[1 -2]。以养殖污水净化处理技术为核心的循环水养殖模式通过适当的工程手段,使养殖污水得到充分的循环利用,减少环境污染,排除环境及外界水质污染对养殖对象的干扰和影响,具有低用水量、高密度、养殖生产不受地域气候限制、资源利用率高、产品优质安全、病害少、自动化程度高等优点,是一种低碳、健康、高效、持续、环保和可协调发展型的渔业生产模式[3 -4]。曝气生物滤池( BAF) 是在普通生物滤池的基础上,结合了活性污泥法、生物接触氧化法工艺的优点而建立起来的一种新型处理工艺[5]。其在生物反应器内装填高比表面积的颗粒填料,以提供微生物生长的载体,具有占地小、出水质量好、流程简单、对环境影响小等诸多优点。根据进出水流向不同分为上向流( UBAF) 或下向流( DBAF) ,一些研究结果表明,UBAF 和 DBAF 两者的微生物分布、DO 浓度变化有一定的差异,各具优缺点[6 -7]。不同流向曝气生物滤池处理养殖污水的试验比较研究尚未见报道。本研究旨在比较不同流向曝气生物滤池对养殖污水的处理效果,为曝气生物滤池在养殖污水中的深入研究及其应用提供理论依据。

1 材料与方法

1. 1 实验用水

实验用水为凡纳滨对虾( Litopenaeus vannamei)养殖污水,水质见表 1。

1. 2 实验装置

1. 2. 1 曝气生物滤池

装置示意图如图 1 所示。为了便于观察滤柱内水流状态和微生物生长情况以及反冲洗时滤料的运动状态,选用透明的有机玻璃柱作为试验滤柱。有机玻璃柱高 120 cm,直径 10 cm,内装陶粒填料高度 115 cm,进水箱容积100 L 的水槽,由恒流泵把水打入 BAF 底部或上部,在出水口进行采样。生物陶粒滤料购自江西省某公司,具体参数如表 2 所示。试验装置采用空气泵通过 8 cm 气盘石进行曝气,曝气部位位于柱子的中下部,目的是营造一段厌氧/缺氧区,提高污水的可生化性,在硝化的同时能实现部分反硝化。另外厌氧部分有利于聚磷菌对污水中易于降解的有机基质的储备和对磷的释放。

1. 2. 2 启动方式

本生物滤池采用的是自然富集培菌挂膜法,即向 BAF 中贮满养殖污水闷曝 3 d,每天更换一次养殖污水,然后采用连续进水连续曝气的方式进行生物膜的培养,约 3 周后挂膜成功。

1. 3 分析项目与方法

试验阶段,水力停留时间( HRT) 为 4 h,气水体积比为3∶ 1,温度为25 ~30 ℃。每3 d 采样一次实验所分析的项目包括化学耗氧量( COD) 、氨氮( NH3- N) 、硝酸盐氮( NO-3- N) 、亚硝酸盐氮( NO-2- N) 、无机氮( DIN) 、活性磷酸盐( PO4-P) 等。COD 采用重铬酸钾法; NH3- N 采用纳氏试剂比色法; NO-3- N 采用酚二磺酸分光光度法;NO-2- N 采用重氮 - 偶氮光度法; PO4- P 采用钼锑抗分光光度法; DIN 为 NH3- N、 NO-3- N、NO-2- N 含量的总和。

2 结果与分析

2. 1 UBAF 和 DBAF 对 COD 的去除效果

UBAF 和 DBAF 的 COD 去除效果随时间变化见图 2。系统进水 COD 变化幅度为 7. 62 ~ 8. 20 mg/L,平均浓度为 7. 85 mg/L。开始 6 d 去除效果不好,这是因为在起始阶段系统尚未稳定。6 d 以后系统表现出稳定的 COD 去除效果,UBAF 出水 COD 浓度稳定在 4. 30 mg/L 左右,平均去除率约 45. 2%;DBAF 出水 COD 浓度稳定在 4. 94 mg / L 左右,平均去除率约37. 0%,有机物经过 UBAF 和 DBAF 系统均没有取得预期较高的去除效果,这可能与水产养殖污水中 COD 含量相对较低有关。COD 的去除主要靠异养菌的作用,生物陶粒表面的生物絮凝作用也可以有效地截留部分有机物。下向流的水流方向向下,已经附着在填料上的生物膜在运行时有可能随水流一起流出,再加上沟流或短流现象存在,从而影响对 COD 的去除效果,而上向流水流方向和曝气方向均为向上,可以有效地抑制该现象的产生。所以,从整体的运行效果来看,上向流的COD 去除率略高于下向流去除率。两者出水 COD均比较稳定,说明 BFA 处理养殖污水均具有一定的耐冲击负荷的能力。

2. 2 UBAF 和 DBAF 对氨氮的去除效果

氨对水生生物的毒性很强,在循环水养殖水处理中快速降低氨氮浓度是非常关键的。UBAF和DBAF 的氨氮去除效果随时间变化见图 3。系统进水 NH3- N 变化幅度为 0. 62 ~ 0. 65 mg /L,平均浓度为 0. 63 mg / L,比较稳定。UBAF 出水NH3- N 浓度平均值为 0. 07 mg / L,平均去除率88. 9% ; DBAF 出水 NH3- N 浓度平均值为 0. 15mg / L,平均去除率 76. 1% ,UBFA 工艺对 NH3- N的去除效果明显好于 DBAF,说明即使在低进水NH3- N 负荷条件下,UBAF 组合工艺仍然可保证较高去除率。但是二者出水 NH3- N 的值均不是很稳定,变化幅度较大。在相同的进水水质条件下,UBAF 工艺对 NH3- N 的去除之所以优于 DBAF 工艺,是由于该工艺本身所特有的气水同向流特性,在滤料层中形成较好的均分和推流作用,拓展了滤床的作用空间,使曝气更加均匀,从而增加溶解氧的传递和对生物膜的穿透力,增加了活性生物膜的比例,相对 DBAF 而言更有利于处于生态竞争劣势的硝化菌繁殖。本系统较高的 NH3- N 去除率也得益于进水相对较低的有机物负荷,反应器内溶解氧较充分,能满足硝化菌和异氧菌的最大需要,两菌之间的竞争不明显。氨氮的去除主要依靠滤料上自养性硝化菌的硝化作用实现的,系统对氨氮的截留作用很小。

2. 3 UBAF 和 DBAF 对硝酸盐氮的去除效果

UBAF 和 DBAF 的硝酸盐氮去除效果随时间变化见图 4。从图 4 可以看出,进水 NO-3- N 变化幅度为0. 54 ~ 0. 59 mg / L,平均浓度为0. 57 mg / L,比较稳定。UBAF 出水 NO-3- N 浓度稳定在 0. 23 mg / L 左右,平均去除率58. 5%; DBAF 出水 NO-3- N 浓度稳定在 0. 29 mg/L 左右,平均去除率 48. 7%。尽管 BFA 工艺对养殖污水 NO-3- N 的去除效果一般,但已经明显高于其他文献所报道的去除效果[8],推测系统在净化水产养殖污水的过程有着与其他污水净化完全不同的过程和机理,养殖污水中除了富含 N、P 营养素外,还存在着大量细菌、原生动物、浮游生物等微型生物,这些微生物的同化作用( 增殖为有机氮) 使得 NO-3- N 大量消耗,降低了出水中 NO-3- N 的含量。再加上反硝化细菌将NO-3- N 还原为 N2,使得 NO-3- N 增加的量小于NO-3- N 消耗的量,总体浓度下降,去除率为正值。UBAF 出水端溶解氧浓度较低,兼性反硝化菌利用硝酸根和亚硝酸根离子中的氧进行呼吸,还原硝酸盐和亚硝酸盐。同时,反硝化菌体内某些酶系统组分在低溶解氧条件下,进行反硝化反应过程,NO-3- N 去除率较高; 而 DBAF 出水端溶解氧偏高,反硝化菌利用水中的氧进行呼吸,在反硝化菌体内硝酸盐还原酶的合成过程中氧成为电子受体,阻碍硝酸盐的还原[9],NO-3- N 去除率较低。

2. 4 UBAF 和 DBAF 对亚硝酸盐氮的去除效果

亚硝酸盐是水产养殖过程中产生的有毒物质,也是强烈的致癌物质,是水产养殖的重要致病根源,是衡量养殖水质好坏的重要指标之一。UBAF和 DBAF 的亚硝酸盐氮去除效果随时间变化见图5。系统 进 水 NO-2- N 变 化 幅 度 为 0. 23 ~0. 27 mg / L,平均浓度为 0. 24 mg / L, 比较稳定。UBAF 出 水 NO-2- N 浓 度 变 化 幅 度 为 0. 04 ~0. 06 mg / L, 平 均 去 除 率 78. 8% ; DBAF 出 水NO-3- N浓度为 0. 085 ~ 0. 104 mg / L,平均去除率61. 8% ,去除效果均中等。NO-2- N 没有 100% 去除说明生长缓慢、时代周期长的硝化细菌的积累还不够或工作效率低下,硝化过程受阻。开始 6 d 硝酸盐菌的生长速率和转化能力没有达到最佳,去除效果不佳。整个处理过程出水浓度变化较大,可能因为影响 NO-2- N 去除效果的因素较多( 比如溶解氧、温度、pH 值等)[10],特别是硝化细菌易受环境条件的影响,任何一个因素的改变都会造成NO-2- N 浓度改变。由于氨氧化细菌和硝化细菌在比增殖速率和氧饱和常数等方面的不同,使其在生物膜中处于不同的空间位置[11],在生物膜体系中,异养菌和氨氧化细菌对氧的争夺能力都强于硝化细菌,故硝化细菌的代谢优势区域只能存在于亚硝酸盐浓度和溶解氧较高,而有机物和氨氮浓度较低的区域。试验没有出现文献[12 -13]报道的亚硝酸氮的积累现象,这可能与进水氨氮和有机物浓度较低,溶解氧浓度较高等有关。

2. 5 UBAF 和 DBAF 对无机氮的去除效果

无机氮为 NH3- N、NO-3- N、NO-2- N 含量的总和,综合反映了系统对氮的处理效果。UBAF和 DBAF 的无机氮去除效果随时间变化见图 6。从图 6 可以看出,系统进水 DIN 平均浓度为1. 44 mg / L( 其中 NO-3- N 占 39. 6% 、NH3- N 占43. 8% 、NO-2- N 占 16. 6% ) ,UBAF 出水 DIN 平均浓度为 0. 36 mg/L( 其中 NO-3- N 占 65. 9% 、NH3- N 占 19. 8% 、NO-2- N 占 14. 3% ) ,平均去除 率 75. 3%; DBAF 出 水 DIN 平 均 浓 度 为0. 53 mg / L( 其中 NO-3- N 占 54. 3% 、NH3- N 占28. 5% 、 NO-2- N 占 17. 2% ) , 平 均 去 除 率63. 0% ,去除效果均中等。结果表明,出水 DIN中的主要组成为 NO-3- N,是影响 DIN 去除率的重要因素,DIN 较好的去除效果应归功于系统较好的反硝化作用和微生物同化作用。

2. 6 UBAF 和 DBAF 对活性磷酸盐的去除效果

UBAF 和 DBAF 的活性磷酸盐去除效果随时间变化见图 7。图 7 中,进出水水样的活性磷酸盐的浓度具有相似的变动趋势。进水水样中活性磷酸盐的浓度为0. 243 ~ 0. 285 mg / L,平均进水活性磷酸盐浓度为0. 263 mg / L; UBAF 出水活性磷酸盐浓度变化幅度为 0. 179 ~ 0. 212 mg/L,平 均 去 除 率 25. 1%;DBAF 出水活性磷酸盐浓度为 0. 152 ~ 0. 219 mg / L,平均去除率 28. 4%,总体来说去除效果均不太理想,这主要是因为进水中的有机磷经微生物氧化分解后转化为了磷酸盐,而 BAF 对磷酸盐去除率又不高造成的。关于生物除磷的机理,一般认为除磷是通过聚磷菌的生物聚磷作用或生物诱导的化学沉淀作用。在本系统中利用聚磷菌的聚磷作用除磷的可能性较小,而通过生物诱导的化学沉淀来实现磷的去除的可能性也不大,决定了这种利用陶粒为填料的生物滤池的除磷效果很差。从图 7 可以看出,DBAF 的除磷效果要略微好于 UBAF,这与其他污染物的去除规律不同,可能因为 DBAF 水流向下,使陶粒的堆积更加致密,强化了截留作用; UBAF 中陶粒处于微悬浮状态,其间的空隙不易被生物膜填充,同时水流的冲刷也不断地将部分生物膜剥落,截留作用较弱。前 6 d 由于 DBAF 的堆积还不够致密,所以去除率小于UBAF。由于脱氮和除磷是一对不可调和的矛盾,随着硝化菌及反硝化菌的繁殖,它们对聚磷菌的拮抗关系逐渐凸显,也抑制了聚磷菌的生长繁殖,在脱氮和除磷相结合的系统中对除磷是不利的。在 BAF系统中也存在同样的问题,即在脱氮过程中同步除磷效果较差,磷的最终去除是通过富含磷的剩余污泥的排放。有效的除磷方法是通过投加化学试剂( 如无机絮凝剂和石灰石) 使磷形成不溶性的沉淀物除去。

2. 7 BAF 应用于循环水养殖的可行性分析

国外学者 Losordo 等[14]提出循环水养殖所必须达到的一些主要的水质指标。其水质要求如下: 氨氮 0. 02 ~ 0. 5 mg/L,亚硝酸氮≤0. 2 mg/L,生化需氧量( BOD) ≤5 mg/L,硝酸氮≤1 000 mg/L,pH 6 ~ 9。GB3838 - 2002 《地表水环境质量标准》Ⅲ类水标准限值( 主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾类越冬场、泅游通道、水产养殖区等渔业水域及游泳区) 为: COD≤20mg / L; 氨氮≤1 mg / L; 总磷≤0. 2 mg / L; 硝酸氮≤10 mg/L。上向流式曝气生物滤池采用气水平行上向流,防止气泡在滤层中的凝结,氧利用率高,持续在整个滤池高度上提供正压条件,可更好地避免沟流或短流,从试验结果可以看出,上向流曝气生物滤池( UBAF) 的出水水质可以达到以上要求,满足循环回用的要求。经改进后可应用于循环水养殖的水处理。

3 讨论

本次试验的立足点是为工厂化封闭循环水养殖的水处理提供参考,采用生态室水族箱连续养殖方法,水质好于池塘养殖。由于出水水质时刻波动,没有设置空白试验组,只进行了上向流( UBAF) 和下向流( DBAF) 两种曝气生物滤池的对比试验,旨在通过对比试验研究,重点探讨两种方式处理效果的差异性。本研究由于时间和试验条件所限,仍有一些不够完善的地方,比如没有考察不同浓度的养殖污水处理效果,而且试验周期也仅为30 d,这使得证明上向流曝气生物滤池可应用于水产养殖污水的处理具有一定局限。为了能更好地解决养殖生产中的实际问题,课题组下一步将努力做好以下工作: ( 1) 考察养殖污水浓度、水力停留时间、气水体积比、温度、填料层高度、反冲洗等因素对两种流向曝气生物滤池处理效果的影响; ( 2) 延长试验周期,考察在连续运行半年乃至一年情况下,系统的处理效果; ( 3) 本实验在研究过程中,没有对滤池内的生物膜特性进行深入研究,生物膜特性是BAF 净化性能发挥的根本,以后对此作更深入的试验研究; ( 4) 尽管目前国内外已经有许多滤料,但是适合工厂化封闭循环水养殖的滤料并不普遍,开发出一种适合工厂化封闭循化水养殖的、经济性好寿命长的滤料组合模式( 比如牡蛎壳和陶粒的组合等) 是我们下一步的工作; ( 5) 建立一套中试装置,通过中试试验考察处理效果,在生产中进一步检验其可行性。

编辑提示,此文是论文格式网为朋友们总结并提醒职称及职称考试的相关事项。希望对朋友们有所帮助。

友荐云推荐
相关论文列表
文无忧论文格式网是一个专业提供各类论文的标准格式,标准论文格式范文,各类论文范文模板,免费论文下载,各类应用文文书、合同范文等的论文网站。
Copyright©2012-2046 文无忧. All Rights Reserved .心无界 文无忧—文无忧 让你行文无忧 版权所有 文无忧lun.wen5u.com-论文无忧
网站合法性备案号:蜀ICP备14013885号-1